Efficacy of COVID-HIGIV in animal models of SARS-CoV-2 infection


  • Hui, D. S. et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan China. Int. J. Infect. Dis. 91, 264–266. https://doi.org/10.1016/j.ijid.2020.01.009 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, J. T., Leung, K. & Leung, G. M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet 395, 689–697. https://doi.org/10.1016/S0140-6736(20)30260-9 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • WHO_Updates. COVID-19 weekly epidemiological update. https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19—14-september-2022 (2022). Accessed 28 Sept 2022.

  • Deng, S. Q. & Peng, H. J. Characteristics of and public health responses to the coronavirus disease 2019 outbreak in China. J. Clin. Med. https://doi.org/10.3390/jcm9020575 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, Q., Lin, Q., Jin, S. & You, L. Coronavirus 2019-nCoV: A brief perspective from the front line. J. Infect. 80, 373–377. https://doi.org/10.1016/j.jinf.2020.02.010 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • FDA. COVID-19 vaccines. https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/covid-19-vaccines (2022). Accessed 28 Sept 2022.

  • Rawat, P., Sharma, D., Srivastava, A., Janakiraman, V. & Gromiha, M. M. Exploring antibody repurposing for COVID-19: Beyond presumed roles of therapeutic antibodies. Sci. Rep. 11, 10220. https://doi.org/10.1038/s41598-021-89621-6 (2021).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • RECOVERY Collaborative Group et al. Dexamethasone in hospitalized patients with Covid-19. N. Engl. J. Med. 384, 693–704. https://doi.org/10.1056/NEJMoa2021436 (2021).

    Article 

    Google Scholar 

  • Beigel, J. H. et al. Remdesivir for the treatment of COVID-19—Final report. N. Engl. J. Med. 383, 1813–1826. https://doi.org/10.1056/NEJMoa2007764 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Khoo, S. H. et al. Optimal dose and safety of molnupiravir in patients with early SARS-CoV-2: A Phase I, open-label, dose-escalating, randomized controlled study. J. Antimicrob. Chemother. 76, 3286–3295. https://doi.org/10.1093/jac/dkab318 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Merck and Ridgeback Biotherapeutics. Merck and ridgeback biotherapeutics provide update on results from MOVe-OUT study of molnupiravir, an investigational oral antiviral medicine, in at risk adults with mild-to-moderate COVID-19. https://www.businesswire.com/news/home/20211126005279/en/ (2021). Accessed 28 Sept 2022.

  • Pfizer. Pfizer’s novel COVID-19 oral antiviral treatment candidate reduced risk of hospitalization or death by 89% in interim analysis of phase 2/3 EPIC-HR study. https://www.pfizer.com/news/press-release/press-release-detail/pfizers-novel-covid-19-oral-antiviral-treatment-candidate (2021). Accessed 28 Sept 2022.

  • Owen, D. R. et al. An oral SARS-CoV-2 M(pro) inhibitor clinical candidate for the treatment of COVID-19. Science https://doi.org/10.1126/science.abl4784 (2021).

    Article 
    PubMed 

    Google Scholar 

  • FDA. Coronavirus (COVID-19) update: FDA authorizes monoclonal antibodies for treatment of COVID-19 (casirivimab and imdevimab). https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-monoclonal-antibodies-treatment-covid-19 (2021). Accessed 28 Sept 2022.

  • FDA. Coronavirus (COVID-19) Update: FDA authorizes monoclonal antibody for treatment of COVID-19 (bamlanivimab). https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-monoclonal-antibody-treatment-covid-19 (2020). Accessed 28 Sept 2022.

  • FDA. Coronavirus (COVID-19) Update: FDA authorizes additional monoclonal antibody for treatment of COVID-19 (sotrovimab). https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-additional-monoclonal-antibody-treatment-covid-19 (2021). Accessed 28 September 2022.

  • FDA. Coronavirus (COVID-19) Update: FDA authorizes monoclonal antibodies for treatment of COVID-19 (bamlanivimab and etesevimab). https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-monoclonal-antibodies-treatment-covid-19-0 (2021). Accessed 28 Sept 2022.

  • Tuccori, M. et al. Anti-SARS-CoV-2 neutralizing monoclonal antibodies: Clinical pipeline. MAbs 12, 1854149. https://doi.org/10.1080/19420862.2020.1854149 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taylor, P. C. et al. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat. Rev. Immunol. 21, 382–393. https://doi.org/10.1038/s41577-021-00542-x (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alexander, H. E. et al. Hemophilus influenzae meningitis treated with streptomycin. J. Am. Med. Assoc. 132, 434–440. https://doi.org/10.1001/jama.1946.02870430014005 (1946).

    Article 
    PubMed 

    Google Scholar 

  • Casadevall, A., Dadachova, E. & Pirofski, L. A. Passive antibody therapy for infectious diseases. Nat. Rev. Microbiol. 2, 695–703. https://doi.org/10.1038/nrmicro974 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Hammon, W. M., Coriell, L. L., Wehrle, P. F. & Stokes, J. Jr. Evaluation of red cross gamma globulin as a prophylactic agent for poliomyelitis. IV. Final report of results based on clinical diagnoses. J. Am. Med. Assoc. 151, 1272–1285 (1953).

    PubMed 

    Google Scholar 

  • Janeway, C. A. Use of concentrated human serum gamma-globulin in the prevention and attenuation of measles. Bull. N. Y. Acad. Med. 21, 202–222 (1945).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Luke, T. C. et al. Hark back: Passive immunotherapy for influenza and other serious infections. Crit. Care Med. 38, e66-73. https://doi.org/10.1097/CCM.0b013e3181d44c1e (2010).

    Article 
    PubMed 

    Google Scholar 

  • Cheng, Y. et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur. J. Clin. Microbiol. Infect. Dis. 24, 44–46. https://doi.org/10.1007/s10096-004-1271-9 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Soo, Y. O. et al. Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin. Microbiol. Infect. 10, 676–678. https://doi.org/10.1111/j.1469-0691.2004.00956.x (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yeh, K. M. et al. Experience of using convalescent plasma for severe acute respiratory syndrome among healthcare workers in a Taiwan hospital. J. Antimicrob. Chemother. 56, 919–922. https://doi.org/10.1093/jac/dki346 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Duan, K. et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc. Natl. Acad. Sci. USA 117, 9490–9496. https://doi.org/10.1073/pnas.2004168117 (2020).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, S. T. H. et al. Convalescent plasma treatment of severe COVID-19: A propensity score-matched control study. Nat. Med. 26, 1708–1713. https://doi.org/10.1038/s41591-020-1088-9 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Shen, C. et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 323, 1582–1589. https://doi.org/10.1001/jama.2020.4783 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Focosi, D., Anderson, A. O., Tang, J. W. & Tuccori, M. Convalescent plasma therapy for COVID-19: State of the art. Clin. Microbiol. Rev. https://doi.org/10.1128/CMR.00072-20 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klassen, S. A. et al. The effect of convalescent plasma therapy on mortality among patients with COVID-19: Systematic review and meta-analysis. Mayo Clin. Proc. 96, 1262–1275. https://doi.org/10.1016/j.mayocp.2021.02.008 (2021).

    Article 
    PubMed 

    Google Scholar 

  • WHO. WHO recommends against the use of convalescent plasma to treat COVID-19. https://www.who.int/news/item/07-12-2021-who-recommends-against-the-use-of-convalescent-plasma-to-treat-covid-19 (2021). Accessed 28 Sept 2022.

  • Jungbauer, C. et al. Characterization of 100 sequential SARS-CoV-2 convalescent plasma donations. Transfusion 61, 12–16. https://doi.org/10.1111/trf.16119 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Hassan, A. O. et al. A SARS-CoV-2 Infection model in mice demonstrates protection by neutralizing antibodies. Cell https://doi.org/10.1016/j.cell.2020.06.011 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zost, S. J. et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 584, 443–449. https://doi.org/10.1038/s41586-020-2548-6 (2020).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baum, A. et al. REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Science 370, 1110–1115. https://doi.org/10.1126/science.abe2402 (2020).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haagmans, B. L. et al. SARS-CoV-2 neutralizing human antibodies protect against lower respiratory tract disease in a hamster model. J. Infect. Dis. https://doi.org/10.1093/infdis/jiab289 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Imai, M. et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc. Natl. Acad. Sci. USA 117, 16587–16595. https://doi.org/10.1073/pnas.2009799117 (2020).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kreye, J. et al. A therapeutic non-self-reactive SARS-CoV-2 antibody protects from lung pathology in a COVID-19 hamster model. Cell 183, 1058-1069.e19. https://doi.org/10.1016/j.cell.2020.09.049 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alexander, M. R. et al. Predicting susceptibility to SARS-CoV-2 infection based on structural differences in ACE2 across species. FASEB J. 34, 15946–15960. https://doi.org/10.1096/fj.202001808R (2020).

    Article 
    PubMed 

    Google Scholar 

  • Hancock, J. T., Rouse, R. C., Stone, E. & Greenhough, A. Interacting proteins, polymorphisms and the susceptibility of animals to SARS-CoV-2. Animals https://doi.org/10.3390/ani11030797 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bao, L. et al. Reinfection could not occur in SARS-CoV-2 infected rhesus macaques. bioRxiv https://doi.org/10.1101/2020.03.13.990226 (2020).

    Article 

    Google Scholar 

  • McCray, P. B. Jr. et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J. Virol. 81, 813–821. https://doi.org/10.1128/JVI.02012-06 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Tseng, C. T. et al. Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human Angiotensin-converting enzyme 2 virus receptor. J. Virol. 81, 1162–1173. https://doi.org/10.1128/JVI.01702-06 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Gu, H. et al. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science 369, 1603–1607. https://doi.org/10.1126/science.abc4730 (2020).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Winkler, E. S. et al. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat. Immunol. 21, 1327–1335. https://doi.org/10.1038/s41590-020-0778-2 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yinda, C. K. et al. K18-hACE2 mice develop respiratory disease resembling severe COVID-19. PLoS Pathog 17, e1009195. https://doi.org/10.1371/journal.ppat.1009195 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zost, S. J. et al. Potently neutralizing human antibodies that block SARS-CoV-2 receptor binding and protect animals. bioRxiv https://doi.org/10.1101/2020.05.22.111005 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, J. et al. Generation of a broadly useful model for COVID-19 pathogenesis, vaccination and treatment. Cell 182, 734-743.e5. https://doi.org/10.1016/j.cell.2020.06.010 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Francis, M. E. et al. SARS-CoV-2 infection in the Syrian hamster model causes inflammation as well as type I interferon dysregulation in both respiratory and non-respiratory tissues including the heart and kidney. PLoS Pathog. 17, e1009705. https://doi.org/10.1371/journal.ppat.1009705 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weston, S. et al. Broad anti-coronavirus activity of food and drug administration-approved drugs against SARS-CoV-2 in vitro and SARS-CoV in vivo. J. Virol. https://doi.org/10.1128/JVI.01218-20 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coleman, C. M. & Frieman, M. B. Growth and quantification of MERS-CoV infection. Curr. Protoc. Microbiol. 37, 11–19. https://doi.org/10.1002/9780471729259.mc15e02s37 (2015).

    Article 

    Google Scholar 

  • Li, W. et al. Rapid identification of a human antibody with high prophylactic and therapeutic efficacy in three animal models of SARS-CoV-2 infection. Proc. Natl. Acad. Sci. USA 117, 29832–29838. https://doi.org/10.1073/pnas.2010197117 (2020).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bennett, R. S. et al. Scalable, micro-neutralization assay for qualitative assessment of SARS-CoV-2 (COVID-19) virus-neutralizing antibodies in human clinical samples. bioRxiv https://doi.org/10.1101/2021.03.05.434152 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chan, J. F. et al. Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in golden Syrian hamster model: Implications for disease pathogenesis and transmissibility. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa325 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sia, S. F. et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583, 834–838. https://doi.org/10.1038/s41586-020-2342-5 (2020).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramakrishnan, M. A. Determination of 50% endpoint titer using a simple formula. World J. Virol. 5, 85–86. https://doi.org/10.5501/wjv.v5.i2.85 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, X. & Moore, B. B. Lung section staining and microscopy. Bio- Protocol https://doi.org/10.21769/BioProtoc.2286 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katz, L. M. (A Little) Clarity on convalescent plasma for COVID-19. N. Engl. J. Med. 384, 666–668. https://doi.org/10.1056/NEJMe2035678 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Bégin, P. et al. Convalescent plasma for hospitalized patients with COVID-19: An open-label, randomized controlled trial. Nat. Med. https://doi.org/10.1038/s41591-021-01488-2 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Libster, R. et al. Early high-titer plasma therapy to prevent severe COVID-19 in older adults. N. Engl. J. Med. 384, 610–618. https://doi.org/10.1056/NEJMoa2033700 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Byrne, J. Inhaled mAb therapy against COVID-19 in the works: ‘The product is not dependent on cold chain distribution and storage’. https://www.biopharma-reporter.com/Article/2021/06/25/Inhaled-mAb-therapy-against-COVID-19-in-the-works-The-product-is-not-dependent-on-cold-chain-distribution-and-storage (2021). Accessed 28 Sept 2022.

  • Chen, R. E. et al. In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains. Nature https://doi.org/10.1038/s41586-021-03720-y (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Diamond, M. et al. In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains. Res. Sq. https://doi.org/10.21203/rs.3.rs-448370/v1 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weisblum, Y. et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. Elife https://doi.org/10.7554/eLife.61312 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tharmalingam, T., Han, X., Wozniak, A. & Saward, L. Polyclonal hyper immunoglobulin: A proven treatment and prophylaxis platform for passive immunization to address existing and emerging diseases. Hum. Vaccin. Immunother. https://doi.org/10.1080/21645515.2021.1886560 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Graham, B. S. & Ambrosino, D. M. History of passive antibody administration for prevention and treatment of infectious diseases. Curr. Opin. HIV AIDS 10, 129–134. https://doi.org/10.1097/COH.0000000000000154 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sparrow, E., Friede, M., Sheikh, M. & Torvaldsen, S. Therapeutic antibodies for infectious diseases. Bull. World Health Organ. 95, 235–237. https://doi.org/10.2471/BLT.16.178061 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stauft, C. B. et al. Pharmacokinetics and efficacy of human hyperimmune intravenous immunoglobulin treatment of SARS-CoV-2 infection in adult Syrian hamsters. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciab854 (2021).

    Article 

    Google Scholar 

  • Magyarics, Z. et al. Randomized, double-blind, placebo-controlled, single-ascending-dose study of the penetration of a monoclonal antibody combination (ASN100) targeting Staphylococcus aureus cytotoxins in the lung epithelial lining fluid of healthy volunteers. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.00350-19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shah, D. K. & Betts, A. M. Antibody biodistribution coefficients: Inferring tissue concentrations of monoclonal antibodies based on the plasma concentrations in several preclinical species and human. MAbs 5, 297–305. https://doi.org/10.4161/mabs.23684 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, M. et al. Quantitative biodistribution of biotherapeutics at whole body, organ and cellular levels by autoradiography. Bioanalysis 10, 1487–1500. https://doi.org/10.4155/bio-2018-0046 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Piepenbrink, M. S. et al. Therapeutic activity of an inhaled potent SARS-CoV-2 neutralizing human monoclonal antibody in hamsters. Cell Rep. Med. 2, 100218. https://doi.org/10.1016/j.xcrm.2021.100218 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, C. Y. & Lowen, A. C. Animal models for SARS-CoV-2. Curr. Opin. Virol. 48, 73–81. https://doi.org/10.1016/j.coviro.2021.03.009 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Muñoz-Fontela, C. et al. Animal models for COVID-19. Nature 586, 509–515. https://doi.org/10.1038/s41586-020-2787-6 (2020).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shou, S. et al. Animal models for COVID-19: Hamsters, mouse, ferret, mink, tree shrew and non-human primates. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.626553 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    Efficacy of COVID-HIGIV in animal models of SARS-CoV-2 infection

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Scroll to top