[ad_1]
Hui, D. S. et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan China. Int. J. Infect. Dis. 91, 264–266. https://doi.org/10.1016/j.ijid.2020.01.009 (2020).
Google Scholar
Wu, J. T., Leung, K. & Leung, G. M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet 395, 689–697. https://doi.org/10.1016/S0140-6736(20)30260-9 (2020).
Google Scholar
WHO_Updates. COVID-19 weekly epidemiological update. https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19—14-september-2022 (2022). Accessed 28 Sept 2022.
Deng, S. Q. & Peng, H. J. Characteristics of and public health responses to the coronavirus disease 2019 outbreak in China. J. Clin. Med. https://doi.org/10.3390/jcm9020575 (2020).
Google Scholar
Han, Q., Lin, Q., Jin, S. & You, L. Coronavirus 2019-nCoV: A brief perspective from the front line. J. Infect. 80, 373–377. https://doi.org/10.1016/j.jinf.2020.02.010 (2020).
Google Scholar
FDA. COVID-19 vaccines. https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/covid-19-vaccines (2022). Accessed 28 Sept 2022.
Rawat, P., Sharma, D., Srivastava, A., Janakiraman, V. & Gromiha, M. M. Exploring antibody repurposing for COVID-19: Beyond presumed roles of therapeutic antibodies. Sci. Rep. 11, 10220. https://doi.org/10.1038/s41598-021-89621-6 (2021).
Google Scholar
RECOVERY Collaborative Group et al. Dexamethasone in hospitalized patients with Covid-19. N. Engl. J. Med. 384, 693–704. https://doi.org/10.1056/NEJMoa2021436 (2021).
Google Scholar
Beigel, J. H. et al. Remdesivir for the treatment of COVID-19—Final report. N. Engl. J. Med. 383, 1813–1826. https://doi.org/10.1056/NEJMoa2007764 (2020).
Google Scholar
Khoo, S. H. et al. Optimal dose and safety of molnupiravir in patients with early SARS-CoV-2: A Phase I, open-label, dose-escalating, randomized controlled study. J. Antimicrob. Chemother. 76, 3286–3295. https://doi.org/10.1093/jac/dkab318 (2021).
Google Scholar
Merck and Ridgeback Biotherapeutics. Merck and ridgeback biotherapeutics provide update on results from MOVe-OUT study of molnupiravir, an investigational oral antiviral medicine, in at risk adults with mild-to-moderate COVID-19. https://www.businesswire.com/news/home/20211126005279/en/ (2021). Accessed 28 Sept 2022.
Pfizer. Pfizer’s novel COVID-19 oral antiviral treatment candidate reduced risk of hospitalization or death by 89% in interim analysis of phase 2/3 EPIC-HR study. https://www.pfizer.com/news/press-release/press-release-detail/pfizers-novel-covid-19-oral-antiviral-treatment-candidate (2021). Accessed 28 Sept 2022.
Owen, D. R. et al. An oral SARS-CoV-2 M(pro) inhibitor clinical candidate for the treatment of COVID-19. Science https://doi.org/10.1126/science.abl4784 (2021).
Google Scholar
FDA. Coronavirus (COVID-19) update: FDA authorizes monoclonal antibodies for treatment of COVID-19 (casirivimab and imdevimab). https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-monoclonal-antibodies-treatment-covid-19 (2021). Accessed 28 Sept 2022.
FDA. Coronavirus (COVID-19) Update: FDA authorizes monoclonal antibody for treatment of COVID-19 (bamlanivimab). https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-monoclonal-antibody-treatment-covid-19 (2020). Accessed 28 Sept 2022.
FDA. Coronavirus (COVID-19) Update: FDA authorizes additional monoclonal antibody for treatment of COVID-19 (sotrovimab). https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-additional-monoclonal-antibody-treatment-covid-19 (2021). Accessed 28 September 2022.
FDA. Coronavirus (COVID-19) Update: FDA authorizes monoclonal antibodies for treatment of COVID-19 (bamlanivimab and etesevimab). https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-monoclonal-antibodies-treatment-covid-19-0 (2021). Accessed 28 Sept 2022.
Tuccori, M. et al. Anti-SARS-CoV-2 neutralizing monoclonal antibodies: Clinical pipeline. MAbs 12, 1854149. https://doi.org/10.1080/19420862.2020.1854149 (2020).
Google Scholar
Taylor, P. C. et al. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat. Rev. Immunol. 21, 382–393. https://doi.org/10.1038/s41577-021-00542-x (2021).
Google Scholar
Alexander, H. E. et al. Hemophilus influenzae meningitis treated with streptomycin. J. Am. Med. Assoc. 132, 434–440. https://doi.org/10.1001/jama.1946.02870430014005 (1946).
Google Scholar
Casadevall, A., Dadachova, E. & Pirofski, L. A. Passive antibody therapy for infectious diseases. Nat. Rev. Microbiol. 2, 695–703. https://doi.org/10.1038/nrmicro974 (2004).
Google Scholar
Hammon, W. M., Coriell, L. L., Wehrle, P. F. & Stokes, J. Jr. Evaluation of red cross gamma globulin as a prophylactic agent for poliomyelitis. IV. Final report of results based on clinical diagnoses. J. Am. Med. Assoc. 151, 1272–1285 (1953).
Google Scholar
Janeway, C. A. Use of concentrated human serum gamma-globulin in the prevention and attenuation of measles. Bull. N. Y. Acad. Med. 21, 202–222 (1945).
Google Scholar
Luke, T. C. et al. Hark back: Passive immunotherapy for influenza and other serious infections. Crit. Care Med. 38, e66-73. https://doi.org/10.1097/CCM.0b013e3181d44c1e (2010).
Google Scholar
Cheng, Y. et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur. J. Clin. Microbiol. Infect. Dis. 24, 44–46. https://doi.org/10.1007/s10096-004-1271-9 (2005).
Google Scholar
Soo, Y. O. et al. Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin. Microbiol. Infect. 10, 676–678. https://doi.org/10.1111/j.1469-0691.2004.00956.x (2004).
Google Scholar
Yeh, K. M. et al. Experience of using convalescent plasma for severe acute respiratory syndrome among healthcare workers in a Taiwan hospital. J. Antimicrob. Chemother. 56, 919–922. https://doi.org/10.1093/jac/dki346 (2005).
Google Scholar
Duan, K. et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc. Natl. Acad. Sci. USA 117, 9490–9496. https://doi.org/10.1073/pnas.2004168117 (2020).
Google Scholar
Liu, S. T. H. et al. Convalescent plasma treatment of severe COVID-19: A propensity score-matched control study. Nat. Med. 26, 1708–1713. https://doi.org/10.1038/s41591-020-1088-9 (2020).
Google Scholar
Shen, C. et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 323, 1582–1589. https://doi.org/10.1001/jama.2020.4783 (2020).
Google Scholar
Focosi, D., Anderson, A. O., Tang, J. W. & Tuccori, M. Convalescent plasma therapy for COVID-19: State of the art. Clin. Microbiol. Rev. https://doi.org/10.1128/CMR.00072-20 (2020).
Google Scholar
Klassen, S. A. et al. The effect of convalescent plasma therapy on mortality among patients with COVID-19: Systematic review and meta-analysis. Mayo Clin. Proc. 96, 1262–1275. https://doi.org/10.1016/j.mayocp.2021.02.008 (2021).
Google Scholar
WHO. WHO recommends against the use of convalescent plasma to treat COVID-19. https://www.who.int/news/item/07-12-2021-who-recommends-against-the-use-of-convalescent-plasma-to-treat-covid-19 (2021). Accessed 28 Sept 2022.
Jungbauer, C. et al. Characterization of 100 sequential SARS-CoV-2 convalescent plasma donations. Transfusion 61, 12–16. https://doi.org/10.1111/trf.16119 (2021).
Google Scholar
Hassan, A. O. et al. A SARS-CoV-2 Infection model in mice demonstrates protection by neutralizing antibodies. Cell https://doi.org/10.1016/j.cell.2020.06.011 (2020).
Google Scholar
Zost, S. J. et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 584, 443–449. https://doi.org/10.1038/s41586-020-2548-6 (2020).
Google Scholar
Baum, A. et al. REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Science 370, 1110–1115. https://doi.org/10.1126/science.abe2402 (2020).
Google Scholar
Haagmans, B. L. et al. SARS-CoV-2 neutralizing human antibodies protect against lower respiratory tract disease in a hamster model. J. Infect. Dis. https://doi.org/10.1093/infdis/jiab289 (2021).
Google Scholar
Imai, M. et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc. Natl. Acad. Sci. USA 117, 16587–16595. https://doi.org/10.1073/pnas.2009799117 (2020).
Google Scholar
Kreye, J. et al. A therapeutic non-self-reactive SARS-CoV-2 antibody protects from lung pathology in a COVID-19 hamster model. Cell 183, 1058-1069.e19. https://doi.org/10.1016/j.cell.2020.09.049 (2020).
Google Scholar
Alexander, M. R. et al. Predicting susceptibility to SARS-CoV-2 infection based on structural differences in ACE2 across species. FASEB J. 34, 15946–15960. https://doi.org/10.1096/fj.202001808R (2020).
Google Scholar
Hancock, J. T., Rouse, R. C., Stone, E. & Greenhough, A. Interacting proteins, polymorphisms and the susceptibility of animals to SARS-CoV-2. Animals https://doi.org/10.3390/ani11030797 (2021).
Google Scholar
Bao, L. et al. Reinfection could not occur in SARS-CoV-2 infected rhesus macaques. bioRxiv https://doi.org/10.1101/2020.03.13.990226 (2020).
Google Scholar
McCray, P. B. Jr. et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J. Virol. 81, 813–821. https://doi.org/10.1128/JVI.02012-06 (2007).
Google Scholar
Tseng, C. T. et al. Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human Angiotensin-converting enzyme 2 virus receptor. J. Virol. 81, 1162–1173. https://doi.org/10.1128/JVI.01702-06 (2007).
Google Scholar
Gu, H. et al. Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science 369, 1603–1607. https://doi.org/10.1126/science.abc4730 (2020).
Google Scholar
Winkler, E. S. et al. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat. Immunol. 21, 1327–1335. https://doi.org/10.1038/s41590-020-0778-2 (2020).
Google Scholar
Yinda, C. K. et al. K18-hACE2 mice develop respiratory disease resembling severe COVID-19. PLoS Pathog 17, e1009195. https://doi.org/10.1371/journal.ppat.1009195 (2021).
Google Scholar
Zost, S. J. et al. Potently neutralizing human antibodies that block SARS-CoV-2 receptor binding and protect animals. bioRxiv https://doi.org/10.1101/2020.05.22.111005 (2020).
Google Scholar
Sun, J. et al. Generation of a broadly useful model for COVID-19 pathogenesis, vaccination and treatment. Cell 182, 734-743.e5. https://doi.org/10.1016/j.cell.2020.06.010 (2020).
Google Scholar
Francis, M. E. et al. SARS-CoV-2 infection in the Syrian hamster model causes inflammation as well as type I interferon dysregulation in both respiratory and non-respiratory tissues including the heart and kidney. PLoS Pathog. 17, e1009705. https://doi.org/10.1371/journal.ppat.1009705 (2021).
Google Scholar
Weston, S. et al. Broad anti-coronavirus activity of food and drug administration-approved drugs against SARS-CoV-2 in vitro and SARS-CoV in vivo. J. Virol. https://doi.org/10.1128/JVI.01218-20 (2020).
Google Scholar
Coleman, C. M. & Frieman, M. B. Growth and quantification of MERS-CoV infection. Curr. Protoc. Microbiol. 37, 11–19. https://doi.org/10.1002/9780471729259.mc15e02s37 (2015).
Google Scholar
Li, W. et al. Rapid identification of a human antibody with high prophylactic and therapeutic efficacy in three animal models of SARS-CoV-2 infection. Proc. Natl. Acad. Sci. USA 117, 29832–29838. https://doi.org/10.1073/pnas.2010197117 (2020).
Google Scholar
Bennett, R. S. et al. Scalable, micro-neutralization assay for qualitative assessment of SARS-CoV-2 (COVID-19) virus-neutralizing antibodies in human clinical samples. bioRxiv https://doi.org/10.1101/2021.03.05.434152 (2021).
Google Scholar
Chan, J. F. et al. Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in golden Syrian hamster model: Implications for disease pathogenesis and transmissibility. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa325 (2020).
Google Scholar
Sia, S. F. et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583, 834–838. https://doi.org/10.1038/s41586-020-2342-5 (2020).
Google Scholar
Ramakrishnan, M. A. Determination of 50% endpoint titer using a simple formula. World J. Virol. 5, 85–86. https://doi.org/10.5501/wjv.v5.i2.85 (2016).
Google Scholar
Zhou, X. & Moore, B. B. Lung section staining and microscopy. Bio- Protocol https://doi.org/10.21769/BioProtoc.2286 (2017).
Google Scholar
Katz, L. M. (A Little) Clarity on convalescent plasma for COVID-19. N. Engl. J. Med. 384, 666–668. https://doi.org/10.1056/NEJMe2035678 (2021).
Google Scholar
Bégin, P. et al. Convalescent plasma for hospitalized patients with COVID-19: An open-label, randomized controlled trial. Nat. Med. https://doi.org/10.1038/s41591-021-01488-2 (2021).
Google Scholar
Libster, R. et al. Early high-titer plasma therapy to prevent severe COVID-19 in older adults. N. Engl. J. Med. 384, 610–618. https://doi.org/10.1056/NEJMoa2033700 (2021).
Google Scholar
Byrne, J. Inhaled mAb therapy against COVID-19 in the works: ‘The product is not dependent on cold chain distribution and storage’. https://www.biopharma-reporter.com/Article/2021/06/25/Inhaled-mAb-therapy-against-COVID-19-in-the-works-The-product-is-not-dependent-on-cold-chain-distribution-and-storage (2021). Accessed 28 Sept 2022.
Chen, R. E. et al. In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains. Nature https://doi.org/10.1038/s41586-021-03720-y (2021).
Google Scholar
Diamond, M. et al. In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains. Res. Sq. https://doi.org/10.21203/rs.3.rs-448370/v1 (2021).
Google Scholar
Weisblum, Y. et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. Elife https://doi.org/10.7554/eLife.61312 (2020).
Google Scholar
Tharmalingam, T., Han, X., Wozniak, A. & Saward, L. Polyclonal hyper immunoglobulin: A proven treatment and prophylaxis platform for passive immunization to address existing and emerging diseases. Hum. Vaccin. Immunother. https://doi.org/10.1080/21645515.2021.1886560 (2021).
Google Scholar
Graham, B. S. & Ambrosino, D. M. History of passive antibody administration for prevention and treatment of infectious diseases. Curr. Opin. HIV AIDS 10, 129–134. https://doi.org/10.1097/COH.0000000000000154 (2015).
Google Scholar
Sparrow, E., Friede, M., Sheikh, M. & Torvaldsen, S. Therapeutic antibodies for infectious diseases. Bull. World Health Organ. 95, 235–237. https://doi.org/10.2471/BLT.16.178061 (2017).
Google Scholar
Stauft, C. B. et al. Pharmacokinetics and efficacy of human hyperimmune intravenous immunoglobulin treatment of SARS-CoV-2 infection in adult Syrian hamsters. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciab854 (2021).
Google Scholar
Magyarics, Z. et al. Randomized, double-blind, placebo-controlled, single-ascending-dose study of the penetration of a monoclonal antibody combination (ASN100) targeting Staphylococcus aureus cytotoxins in the lung epithelial lining fluid of healthy volunteers. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.00350-19 (2019).
Google Scholar
Shah, D. K. & Betts, A. M. Antibody biodistribution coefficients: Inferring tissue concentrations of monoclonal antibodies based on the plasma concentrations in several preclinical species and human. MAbs 5, 297–305. https://doi.org/10.4161/mabs.23684 (2013).
Google Scholar
Wang, M. et al. Quantitative biodistribution of biotherapeutics at whole body, organ and cellular levels by autoradiography. Bioanalysis 10, 1487–1500. https://doi.org/10.4155/bio-2018-0046 (2018).
Google Scholar
Piepenbrink, M. S. et al. Therapeutic activity of an inhaled potent SARS-CoV-2 neutralizing human monoclonal antibody in hamsters. Cell Rep. Med. 2, 100218. https://doi.org/10.1016/j.xcrm.2021.100218 (2021).
Google Scholar
Lee, C. Y. & Lowen, A. C. Animal models for SARS-CoV-2. Curr. Opin. Virol. 48, 73–81. https://doi.org/10.1016/j.coviro.2021.03.009 (2021).
Google Scholar
Muñoz-Fontela, C. et al. Animal models for COVID-19. Nature 586, 509–515. https://doi.org/10.1038/s41586-020-2787-6 (2020).
Google Scholar
Shou, S. et al. Animal models for COVID-19: Hamsters, mouse, ferret, mink, tree shrew and non-human primates. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.626553 (2021).
Google Scholar
[ad_2]
Source link